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Abstract

The present paper investigates the problem of a conducting arc crack between a circular piezoelectric inclusion and

an unbounded piezoelectric matrix. The original boundary value problem is reduced to a standard Riemann–Hilbert

problem of vector form by means of analytical continuation. Explicit solutions for the stress singularities

d ¼ �ð1=2Þ � ie are obtained, closed form solutions for the field potentials are then derived through adopting a de-

coupling procedure. In addition, explicit expressions for the field component distributions in the whole field and along

the circular interface are also obtained. Different from the interface insulating crack, stresses, strains, electric dis-

placements and electric fields at the crack tips all exhibit oscillatory singularities. We also define a complex electro-

elastic field concentration vector to characterize the singular fields near the crack tips and derive a simple expression for

the energy release rate, which is always positive, in terms of the field concentration vector. The condition for the

disappearance of the index e is also discussed. When the index e is zero, we obtain conventionally defined electro-elastic

intensity factors. The examples demonstrate the physical behavior and the correctness of the obtained solution.

� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Due to their intrinsic electromechanical coupling behaviors, piezoelectric ceramics have been widely used

for applications such as sensors, filters, ultrasonic generators and actuators. More recently, the use of
piezoelectric materials has gone beyond the traditional application domain of small electric devices due to

the emergence of piezoelectric composites. Nowadays, piezoelectric materials have been employed as in-

tegrated active structural elements. These adaptive structures are capable of monitoring and adapting to

their environment, providing a ‘‘smart’’ response to the external conditions. Since fracture on the macro-

and micro-scale can lead to undesirable mechanical and dielectric response for piezoelectric compo-

sites, fracture process of piezoelectric materials has been a subject of active research. An interface crack
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investigation is of paramount importance for various devices in piezoelectric composites because such

cracks are often the main reason for the failure of the composite system. Kuo and Barnett (1991), Suo et al.

(1992) considered the electrically conducting and electrically insulating crack faces, and singularities at the

tip of an interface crack were investigated. Particularly, a singularity of a real power type was discovered
around an interface crack tip for insulated crack faces. Govorukha and Loboda (2000) examined a plane

strain problem for an interface crack along the fixed edge of a piezoelectric semi-infinite space. Electrically

conducting and electrically insulating crack surfaces were considered in their investigation by using Fourier

transforms. They found oscillatory singularities for an interface conducting crack, and introduced fric-

tionless contact zones to eliminate the oscillatory singularities. Zhong and Meguid (1997) solved the par-

tially debonded circular inclusion problem in piezoelectric materials with hexagonal symmetry (6 mm),

which have been used for many different industrial purposes due to their high piezoelectric coupling co-

efficients. They derived explicit series expressions for the field potentials using Laurent series expansion. As
pointed out by Deng and Meguid (1999), their solution was cumbersome and its convergence depends on

the number of terms used in the series. More recently, Deng and Meguid (1999) reexamined the problem of

a partially debonded piezoelectric circular inclusion. They obtained closed form solutions by considering the

behavior of the complex field potentials at origin and infinity, and also derived explicit formulas for the field

intensity factors. Wang and Shen (2001) considered an arc interface crack in a three-phase piezoelectric

composite constitutive model. In the three-phase model, the interaction effects between neighboring in-

clusions can be taken into account. They obtained series form solutions for the field potentials and the field

intensity factors.
In the discussions of Zhong and Meguid (1997), Deng and Meguid (1999), Wang and Shen (2001), the

arc-shaped crack surfaces were assumed to be insulating or ‘‘vacuum abutted’’. The conducting arc crack

case or the ‘‘electrode’’ case, in which the void inside the crack is a stress-free, conducting included phase, is

also of theoretical and practical interest since dielectric break down is often associated with growth of

conducting cracks. To our knowledge, this problem has not been investigated in detail. Therefore, this paper

presents a systematic analysis of a conducting arc crack between a circular piezoelectric inclusion and

an unbounded piezoelectric matrix. Using the analytical continuation method of Muskhelishvili (1953),

the boundary value problem is reduced to a standard Riemann–Hilbert problem of vector form. Then
closed form solutions for the field potentials are obtained by solving the resulting Riemann–Hilbert

problem through diagonalization. In addition, explicit expressions for the physical quantity distributions in

the whole field and along the circular interface are also obtained. We find that the stresses, strains, elec-

tric displacements and electric fields near the crack tips all possess the oscillatory singularities �ð1=2Þ � ie,
in which the index e is explicitly determined by the electro-elastic properties of the circular inclusion and

the matrix. We also define a complex electro-elastic field concentration vector to characterize the singular

fields near the crack tips. When e ¼ 0, the conventionally defined electro-elastic field intensity factors are

also obtained explicitly. Finally, several examples are shown to understand the physical behavior of the
solution.

2. Basic equations

Consider a circular piezoelectric inclusion of radius R embedded in an unbounded piezoelectric matrix as

shown in Fig. 1. The two-phase piezoelectric composite is subjected to remote uniform electromechanical

loadings. Both the inclusion and the matrix are assumed to be transversely isotropic with the poling di-
rection parallel to the x3-axis. The regions occupied by the inclusion and the matrix are denoted respectively

as S1 and S2. The interface between S1 and S2 is L ¼ Lc [ Lb, where Lc ¼ ab
\

represents the cracked part
which is electrically conducting and traction-free, while Lb is the ideally bonded part of L. In addition, it is
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assumed that total electric charge on Lc is zero. Without loss of generality, the centre of the arc crack lies on

the negative x-axis and the central angle subtended by Lb is 2a. For the problem considered, the governing

field equations and constitutive equations can be simplified considerably as follows

– governing field equations:

rzx;x þ rzy;y ¼ 0; Dx;x þ Dy;y ¼ 0 ð1Þ

– electric field–electric potential relations:

Ei ¼ �/;i ð2Þ
– linear, piezoelectric constitutive equations:

rzy

Dy

� �
¼ c44 �e15

e15 e11

� �
w;y
Ey

� �
ð3aÞ

rzx

Dx

� �
¼ c44 �e15

e15 e11

� �
w;x
Ex

� �
ð3bÞ

where in Eqs. (1),(2),(3a),(3b), rzx, rzy are the shear stress components; Dx, Dy are the electric displacement

components; Ex, Ey are the electric fields; w is out-of-plane displacement, / is electric potential. c44, e15 and
e11 are respectively the elastic modulus measured in a constant electric field, the piezoelectric constant, the

dielectric permittivity measured at a constant strain.
For the boundary value problem discussed in this paper, it is more convenient to rewrite the above set of

equations into the following equivalent ones

Fig. 1. A conducting arc crack between a circular piezoelectric inclusion and an infinite piezoelectric matrix.
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– governing field equations:

rzx;x þ rzy;y ¼ 0; Ey;x � Ex;y ¼ 0 ð4Þ
– linear, piezoelectric constitutive equations:

rzy

�Ex

� �
¼

c44 þ
e215
e11

0

0
1

e11

2664
3775 w;y

u;y

� �
þ

0 � e15
e11e15

e11
0

264
375 w;x

u;x

� �
ð5aÞ

rzx

Ey

� �
¼

c44 þ
e215
e11

0

0
1

e11

2664
3775 w;x

u;x

� �
�

0 � e15
e11e15

e11
0

264
375 w;y

u;y

� �
ð5bÞ

where the function u is defined in terms of the electric displacements, as follows

Dy ¼ u;x; Dx ¼ �u;y ð6Þ
Substitution of Eqs. (5a) and (5b) into Eq. (4) results in

r2w
r2u

� �
¼ 0 ðc44e11 þ e215 6¼ 0Þ ð7Þ

where r2 ¼ o2=ox2 þ o2=oy2 is the two-dimensional Laplace operator in the variables x and y.
The general solution to the above partial differential equation (7) is

U ¼ w
u

� �
¼ ImffðzÞg ð8Þ

where fðzÞ is a 2-D analytic function vector of the complex variable z ¼ xþ iy.
Then the mechanical strains and electric displacements as well as stresses and electric fields can be ex-

pressed in terms of fðzÞ as

czy þ iczx
�Dx þ iDy

� �
¼ f 0ðzÞ ð9Þ

rzy þ irzx

�Ex þ iEy

� �
¼ Cf 0ðzÞ ð10Þ

in the fixed Cartesian coordinate system, and

czh þ iczr
�Dr þ iDh

� �
¼ z

zj j f
0ðzÞ ð11Þ

rzh þ irzr

�Er þ iEh

� �
¼ z

zj jCf
0ðzÞ ð12Þ

in the polar coordinate system, where in Eqs. (10) and (12)

C ¼
c44 þ

e215
e11

i
e15
e11

�i
e15
e11

1

e11

2664
3775 ð13Þ

Apparently, C is a Hermitian matrix.
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Now introduce a function vector U, which satisfies the following relationship

rzy

�Ex

� �
¼ U;x;

rzx

Ey

� �
¼ �U;y ð14Þ

Apparently, the second component function of U is electric potential /.
Then it follows from Eq. (10) that

U ¼ RefCfðzÞg ð15Þ

Eqs. (8) and (15) can be written together into the following compact form

C�1U þ iU ¼ fðzÞ ð16Þ

In the following analysis, the potential vector f1ðzÞ is defined in the inclusion jzj < a, while the potential
vector f2ðzÞ is defined in the matrix jzj > a.

The boundary and continuity conditions on the circular interface L are

rð1Þ
zr ¼ rð2Þ

zr ¼ 0; Eð1Þ
h ¼ Eð2Þ

h ¼ 0; r 2 Lc

rð1Þ
zr ¼ rð2Þ

zr ; Eð1Þ
h ¼ Eð2Þ

h ; cð1Þh ¼ cð2Þh ; Dð1Þ
r ¼ Dð2Þ

r ; r 2 Lb

ð17Þ

where the superscripts ‘‘(1)’’ and ‘‘(2)’’ denote the physical quantities pertaining to the inclusion and the
matrix, respectively.

The above boundary and continuity conditions on the circular interface L can be expressed in terms of

the field potentials f1ðzÞ and f2ðzÞ as follows

rC1f
0
1ðrÞ � rC1f

0
1ðrÞ ¼ 0; r 2 Lc

rC2f
0
2ðrÞ � rC2f

0
2ðrÞ ¼ 0; r 2 Lc

rC1f
0
1ðrÞ � rC1f

0
1ðrÞ ¼ rC2f

0
2ðrÞ � rC2f

0
2ðrÞ; r 2 Lb

rf 01ðrÞ þ rf 01ðrÞ ¼ rf 02ðrÞ þ rf 02ðrÞ; r 2 Lb

ð18Þ

We are now in a position to determine the field potentials which satisfy the boundary and continuity
conditions Eq. (18).

3. Closed form solutions for complex potentials f1(z) and f2(z)

It follows from Eq. (18)1;2;3 that the continuity conditions of traction and tangential component of

electric fields across interface jrj ¼ R can be expressed as

rC1f
0þ
1 ðrÞ � R2=rC1

�ff
0�
1 ðR2=rÞ ¼ rC2f

0�
2 ðrÞ � R2=rC2

�ff 0þ2 ðR2=rÞ; jrj ¼ R ð19Þ

Introduce a function vector DðzÞ defined by

DðzÞ ¼
(
zC1f

0
1ðzÞ þ R2=zC2

�ff 02ðR2=zÞ � C2Tz� C2TR2=z; jzj < a

R2=zC1
�ff 01ðR2=zÞ þ zC2f

0
2ðzÞ � C2Tz� �CC2TR2=z; jzj > a

ð20Þ

where the constant vector T is connected with the remote uniform electromechanical loadings, the explicit

expressions for T can be found in the appendix.
It follows from Eqs. (19) and (20) that DðzÞ is analytic and single-valued in the whole complex plane

including the points at infinity. By Liouville�s theorem, we have
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DðzÞ � 0 ð21Þ
then the following can be obtained

R2=z�ff
0

2ðR2=zÞ ¼ �zC
�1

2 C1f
0
1ðzÞ þ C

�1

2 C2Tzþ TR2=z; jzj < a

R2=z�ff
0

1ðR2=zÞ ¼ �zC
�1

1 C2f
0
2ðzÞ þ C

�1

1 C2Tzþ C
�1

1 C2TR2=z; jzj > a

(
ð22Þ

It follows from Eq. (18)4 that the continuity condition of tangential component of mechanical strains

and normal component of electric displacements across the bonded part Lb of the interface can be expressed

as

rf 0þ1 ðrÞ þ R2=r�ff 0�1 ðR2=rÞ ¼ rf 0�2 ðrÞ þ R2=r�ff
0

2
þðR2=rÞ; r 2 Lb ð23Þ

Substituting Eq. (20) into Eq. (23) will yield

rðIþ C
�1

2 C1Þf 0þ1 ðrÞ � rðIþ C
�1

1 C2Þf 0�2 ðrÞ ¼ ðC�1

2 � C
�1

1 ÞðC2Tr þ C2TR2=rÞ; r 2 Lb ð24Þ
In view of Eq. (24), we introduce the following auxiliary function vector hðzÞ

hðzÞ ¼ zðIþ C
�1

2 C1Þf 01ðzÞ � zðIþ C
�1

2 C2ÞT; jzj < a

zðIþ C
�1

1 C2Þf 02ðzÞ � zðIþ C
�1

1 C2ÞTþ R2=zðI� C
�1

1 C2ÞT; jzj > a

(
ð25Þ

It is apparent that hðzÞ is sectionally holomorphic within the circle jzj < a and outside the circle jzj > a,
and is continuous across the bonded part Lb, i.e.,

hþðrÞ � h�ðrÞ ¼ 0; r 2 Lb ð26Þ
in addition

hð0Þ ¼ 0 ð27Þ
The traction free and equi-potential requirement (18)1 or (18)2 on the debonded part (crack) Lc of the

interface can be expressed as

rC1f
0þ
1 ðrÞ � R2=rC1

�ff 0�1 ðR2=rÞ ¼ 0; r 2 Lc ð28Þ
Using Eqs. (22) and (25), the above boundary condition can be expressed in terms of the newly defined

function vector hðzÞ as follows
MhþðrÞ þMh�ðrÞ ¼ gðrÞ; r 2 Lc ð29Þ

with

gðrÞ ¼ �rMðIþ C
�1

2 C2ÞTþ R2=rMðIþ C�1
2 C2ÞT ð30Þ

and the Hermitian matrix M is given by

M ¼ C�1
1

h
þ C

�1

2

i�1

ð31aÞ

or more specifically

M ¼ 1�
cð1Þ44 þ cð2Þ44


�
eð1Þ11 þ eð2Þ11



þ
�
eð1Þ15 þ eð2Þ15


2
�

cð1Þ44 c
ð2Þ
44

�
eð1Þ11 þ eð2Þ11



þ cð2Þ44 e

ð1Þ2
15 þ cð1Þ44 e

ð2Þ2
15 �i

�
cð1Þ44 e

ð2Þ
15 � cð2Þ44 e

ð1Þ
15



i
�
cð1Þ44 e

ð2Þ
15 � cð2Þ44 e

ð1Þ
15



cð1Þ44 þ cð2Þ44

264
375 ð31bÞ
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Apparently, Eqs. (26) and (29) comprise a standard Riemann–Hilbert problem of vector form. In view of

Eq. (29), we consider the following eigenvalue problem

ðM� e�2peMÞv ¼ 0 ð32Þ
Following Ting (1986), the oscillatory index e in the above equation can be explicitly determined to be

e ¼ � 1

2p
ln
1þ b
1� b

ð33Þ

b ¼ cð1Þ44 e
ð2Þ
15 � cð2Þ44 e

ð1Þ
15ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�

cð1Þ44 þ cð2Þ44



cð1Þ44 c

ð2Þ
44

�
eð1Þ11 þ eð2Þ11



þ cð2Þ44 e

ð1Þ2
15 þ cð1Þ44 e

ð2Þ2
15

h ir ; ð34Þ

while the explicit solution for eigenvector v associated with e is

v ¼ g
�i

� �
ð35Þ

with the real constant g given by

g ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cð1Þ44 þ cð2Þ44

cð1Þ44 c
ð2Þ
44

�
eð1Þ11 þ eð2Þ11



þ cð2Þ44 e

ð1Þ2
15 þ cð1Þ44 e

ð2Þ2
15

vuut ð36Þ

From Eq. (34), we can deduce that a necessary and sufficient condition for the absence of index e is the
following

cð1Þ44

cð2Þ44

¼ eð1Þ15

eð2Þ15

ð37Þ

We find that the above condition is only dependent on elastic and piezoelectric constants of the two

phases, and is independent of the dielectric constants of the two phases. The above condition is equivalent

to ImfMg ¼ 0, which is identical to that shown by Ting (1986) for purely anisotropic elastic bimaterials.

Now introduce the following coordinate transformation

hðzÞ ¼ PĥhðzÞ; ĝgðrÞ ¼ K1P
T
gðrÞ ð38Þ

where

P ¼ g g
i �i

� �
ð39Þ

K1 ¼
cð1Þ44 þ cð2Þ44

� 

eð1Þ11 þ eð2Þ11

� 

þ eð1Þ15 þ eð2Þ15

� 
2
2 cð1Þ44 þ cð2Þ44

� 
 1

1þ b
0

0
1

1� b

2664
3775 ð40Þ

Premultiply Eq. (29) by P
T
and utilize Eq. (38), then we can finally obtain the following decoupled

Riemann–Hilbert problem

ĥhþðrÞ þ Kĥh�ðrÞ ¼ ĝgðrÞ; r 2 Lc ð41Þ
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where

K ¼ e�2pe 0

0 e2pe

� �
ð42Þ

A general solution to Eq. (41) is (Muskhelishvili, 1953)

ĥhðzÞ ¼ X ðzÞ
2pi

Z
Lc

½XþðrÞ��1
ĝgðrÞ

r � z
dr þ X ðzÞc ð43Þ

where the unknown constant vector c can be uniquely determined by Eq. (27), and

X ðzÞ ¼ ðz� aÞ�
1
2
�ieðz� bÞ�

1
2
þie

0

0 ðz� aÞ�
1
2
þieðz� bÞ�

1
2
�ie

" #
ð44Þ

The above basic Plemelj function X ðzÞ has a cut along the crack Lc, in addition X ðzÞ ¼ oðz�1Þ when

z ! 1.

The Cauchy type integral in Eq. (43) can be exactly performed, and the final result is

ĥhðzÞ ¼ �ðIþ KÞ�1 zI½ � zS1ðzÞ�K1P
T
MðIþ C

�1

2 C2ÞTþ ðIþ KÞ�1 R2=zI
�

� zS0ðzÞ
�
K1P

T
MðIþ C�1

2 C2ÞT
ð45Þ

where

S1ðzÞ ¼ X ðzÞ s11ðzÞ 0

0 s21ðzÞ

� �
; S0ðzÞ ¼ XðzÞ s10ðzÞ 0

0 s20ðzÞ

� �
ð46Þ

with

s11ðzÞ ¼ z½ � Rðcos a � 2e sin aÞ�
s21ðzÞ ¼ z½ � Rðcos a þ 2e sin aÞ�

s10ðzÞ ¼ R2e2eðp�aÞ Rz�2
�

� ðcos a þ 2e sin aÞz�1
�

s20ðzÞ ¼ R2e�2eðp�aÞ Rz�2
�

� ðcos a � 2e sin aÞz�1
�

ð47Þ

It follows from Eq. (38) that

hðzÞ ¼ �PðIþ KÞ�1 zI½ � zS1ðzÞ�K1P
T
MðIþ C

�1

2 C2ÞTþ PðIþ KÞ�1 R2=zI
�

� zS0ðzÞ
�
K1P

T
MðIþ C�1

2 C2ÞT
ð48Þ

Noting Eq. (25), then the potential vectors f 01ðzÞ, f
0
2ðzÞ are

f 01ðzÞ ¼ �C�1
1 MPðIþ KÞ�1

I½ � S1ðzÞ�K1P
T
MðIþ C

�1

2 C2ÞT

þ C�1
1 MPðIþ KÞ�1 R2=z2I

�
� S0ðzÞ

�
K1P

T
MðIþ C�1

2 C2ÞTþ C�1
1 MðIþ C

�1

2 C2ÞT jzj < a

ð49Þ

f 02ðzÞ ¼ �C�1
2 MPðIþ KÞ�1

I½ � S1ðzÞ�K1P
T
MðIþ C

�1

2 C2ÞT� R2=z2C�1
2 MðI� C

�1

1 C2ÞT

þ C�1
2 MPðIþ KÞ�1 R2=z2I

�
� S0ðzÞ

�
K1P

T
MðIþ C�1

2 C2ÞTþ T jzj > a ð50Þ
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Integrating the above two expressions will result in

f1ðzÞ ¼ �C�1
1 MPðIþ KÞ�1 zI½ � R1ðzÞ�K1P

T
MðIþ C

�1

2 C2ÞT

� C�1
1 MPðIþ KÞ�1 R2=zI

�
� R0ðzÞ

�
K1P

T
MðIþ C�1

2 C2ÞTþ zC�1
1 MðIþ C

�1

2 C2ÞT jzj < a

ð51Þ

f2ðzÞ ¼ �C�1
2 MPðIþ KÞ�1 zI½ � R1ðzÞ�K1P

T
MðIþ C

�1

2 C2ÞTþ R2=zC�1
2 MðI� C

�1

1 C2ÞT

� C�1
2 MPðIþ KÞ�1 R2=zI

�
� R0ðzÞ

�
K1P

T
MðIþ C�1

2 C2ÞTþ zT jzj > a ð52Þ
where

R1ðzÞ ¼
Z

S1ðzÞdz ¼ ðz� aÞðz� bÞX ðzÞ

R0ðzÞ ¼ �
Z

S0ðzÞdz ¼ Rz�1ðz� aÞðz� bÞX ðzÞ e2eðp�aÞ 0

0 e�2eðp�aÞ

" # ð53Þ

We can also observe that the analysis of a conducting arc crack is more complicated than the analysis of

an insulating arc crack (Zhong and Meguid, 1997; Deng and Meguid, 1999; Wang and Shen, 2001), with

most of the difficulty stemming from resolving the coupled Riemann–Hilbert problem of vector form.

4. Explicit expressions for physical quantities

4.1. Full field distribution of physical quantities

It follows from Eqs. (9), (10) and (49), (50) that

czy þ iczx
�Dx þ iDy

� �
¼ �C�1

1 MPðIþ KÞ�1
I½ � S1ðzÞ�K1P

T
MðIþ C

�1

2 C2ÞT

þ C�1
1 MPðIþ KÞ�1 R2=z2I

�
� S0ðzÞ

�
K1P

T
MðIþ C�1

2 C2ÞTþ C�1
1 MðIþ C

�1

2 C2ÞT ð54Þ

rzy þ irzx

�Ex þ iEy

� �
¼ �MPðIþ KÞ�1

I½ � S1ðzÞ�K1P
T
MðIþ C

�1

2 C2ÞT

þMPðIþ KÞ�1 R2=z2I
�

� S0ðzÞ
�
K1P

T
MðIþ C�1

2 C2ÞTþMðIþ C
�1

2 C2ÞT ð55Þ

within the circular piezoelectric inclusion jzj < a, and

czy þ iczx
�Dx þ iDy

� �
¼ �C�1

2 MPðIþ KÞ�1
I½ � S1ðzÞ�K1P

T
MðIþ C

�1

2 C2ÞT

þ C�1
2 MPðIþ KÞ�1 R2=z2I

�
� S0ðzÞ

�
K1P

T
MðIþ C�1

2 C2ÞT� R2=z2C�1
2 MðI� C

�1

1 C2ÞTþ T

ð56Þ

rzy þ irzx

�Ex þ iEy

� �
¼ �MPðIþ KÞ�1

I½ � S1ðzÞ�K1P
T
MðIþ C

�1

2 C2ÞT

þMPðIþ KÞ�1 R2=z2I
�

� S0ðzÞ
�
K1P

T
MðIþ C�1

2 C2ÞT� R2=z2MðI� C
�1

1 C2ÞTþ C2T

ð57Þ

within the unbounded piezoelectric matrix jzj > a.
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4.2. Distribution of physical quantities along the interface L

It follows from Eqs. (11) and (12) and (49) and (50) that

czh þ iczr
�Dr þ iDh

" #þ
¼ �C�1

1 MPðIþ KÞ�1 r
R

I
�

� Sþ
1ðrÞ

�
K1P

T
MðIþ C

�1

2 C2ÞT

þ C�1
1 MPðIþ KÞ�1 r

R
R2=r2I
�

� Sþ
0 ðrÞ

�
K1P

T
MðIþ C�1

2 C2ÞTþ r
R
C�1

1 MðIþ C
�1

2 C2ÞT

ð58Þ

rzh þ irzr

�Er þ iEh

� �þ
¼ �MPðIþ KÞ�1 r

R
I
�

� Sþ
1ðrÞ

�
K1P

T
MðIþ C

�1

2 C2ÞT

þMPðIþ KÞ�1 r
R

R2=r2I
�

� Sþ
0 ðrÞ

�
K1

�PPTMðIþ C�1
2 C2ÞTþ r

R
MðIþ C

�1

2 C2ÞT ð59Þ

along the inclusion side of the interface jrj ¼ R, and

czh þ iczr
�Dr þ iDh

� ��
¼ �C�1

2 MPðIþ KÞ�1 r
R

I
�

� S�
1ðrÞ

�
K1P

T
MðIþ C

�1

2 C2ÞTþ C�1
2 MPðIþ KÞ�1

� r
R

R2=r2I
�

� S�
0 ðrÞ

�
K1P

T
MðIþ C�1

2 C2ÞT� R
r
C�1

2 MðI� C
�1

1 C2ÞTþ r
R
T ð60Þ

rzh þ irzr

�Er þ iEh

� ��
¼ �MPðIþ KÞ�1 r

R
I
�

� S�
1ðrÞ

�
K1P

T
MðIþ C

�1

2 C2ÞTþMPðIþ KÞ�1

� r
R

R2=r2I
�

� S�
0 ðrÞ

�
K1P

T
MðIþ C�1

2 C2ÞT� R
r
MðI� C

�1

1 C2ÞTþ r
R
C2T ð61Þ

along the matrix side of the interface jrj ¼ R.
It follows from Eqs. (8), (51) and (52) that discontinuity in w and u on the crack Lc can be expressed as

DU ¼ U1 �U2 ¼ Im P ðr
n

� aÞðr � bÞXþðrÞK�1K1P
T
MðIþ C

�1

2 C2ÞT
o
; r 2 Lc ð62Þ

Differentiating the above expression along the tangential direction of the interface will result in the

following densities of dislocations b̂b and electric charges q̂q continuously distributed along the arc crack Lc

b̂b
q̂q

� �
¼ Re

r
R
PSþ

1ðrÞK�1K1
�PPTMðI

n
þ C

�1

2 C2ÞT
o
; r 2 Lc ð63Þ

4.3. Field components near the crack tip

It can be observed from Eqs. (58)–(62) that stresses, strains, electric displacements and electric fields all

possess the oscillatory singularities �ð1=2Þ � ie, a result different from that derived by Zhong and Meguid

(1997), Deng and Meguid (1999), Wang and Shen (2001) for an insulating arc crack. Furthermore, stresses,

strains, electric fields and electric displacements are singularly distributed just ahead of the upper crack tip

a ¼ R expfiag along the interface as follows

czh þ iczr
�Dr þ iDh

� �þ
¼ iffiffiffiffiffiffiffi

2pr
p C�1

1 MPYðrÞK ðr ¼ jr � ajÞ ð64Þ
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rzh þ irzr

�Er þ iEh

� �þ
¼ iffiffiffiffiffiffiffi

2pr
p MPYðrÞK ðr ¼ jr � ajÞ ð65Þ

in the inclusion side, and

czh þ iczr
�Dr þ iDh

� ��
¼ iffiffiffiffiffiffiffi

2pr
p C�1

2 MPYðrÞK ðr ¼ jr � ajÞ ð66Þ

rzh þ irzr

�Er þ iEh

� ��
¼ iffiffiffiffiffiffiffi

2pr
p MPYðrÞK ðr ¼ jr � ajÞ ð67Þ

in the matrix side, where

YðrÞ ¼ r�ie 0

0 rie

� �
ð68Þ

K ¼ K1 þ JK1 ð69aÞ

J ¼ 0 1
1 0

� �
ð69bÞ

K1 ¼ exp i
a
2

n o ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pR sin a

p

�
ð1� 2ieÞ exp ie lnð2R sin aÞ þ eða � pÞf g 0

0 ð1þ 2ieÞ exp � ie lnð2R sin aÞ � eða � pÞf g

� �
� ðIþ KÞ�1K1P

T
MðIþ C

�1

2 C2ÞT ð69cÞ
Then K can be defined as a complex electro-elastic field concentration vector to characterize the singular

fields near the crack tip. Here we point out that the definition for K is very similar to that introduced by
Willis (1971) for purely anisotropic elastic bimaterials. It follows from Eq. (62) that

DU ¼ U1 �U2 ¼ �
ffiffiffiffiffiffi
r
2p

r
ðe�pe þ epeÞP

1

1� 2ie
0

0
1

1þ 2ie

264
375YðrÞK ð70Þ

near the upper crack tip.

Following Pak (1990), we can derive the crack extension force G to be of the form

G ¼ 1

8
K

T e�2peð1þ e�2peÞ 0

0 e2peð1þ e2peÞ

� �
K�1

1 K > 0 ð71Þ

During the derivation for G, the local coordinate system ðn; gÞ as shown in Fig. 1, which is tangential to
the upper crack tip, has been adopted. The right-hand side of Eq. (71) is always positive, reflecting the fact

that the linear piezoelectric model predicts a positive driving force for a conducting crack. The positive

value of G for a conducting crack is different from that obtained by Pak (1990) for an insulating crack, and

is in agreement with that derived by Ru (1999) for a conducting crack parallel to the applied electric field,

and is also in accordance with that derived by Govorukha and Loboda (2000) for a conducting crack with a

frictionless contact zone.

When condition (36) is met, then stresses, strains, electric fields and electric displacements are singularly

distributed just ahead of the upper crack tip along the interface as follows

czh þ iczr
�Dr þ iDh

� �þ
¼ iffiffiffiffiffiffiffi

2pr
p C�1

1
eKK ðr ¼ jr � ajÞ ð72Þ
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rzh þ irzr

�Er þ iEh

� �þ
¼ iffiffiffiffiffiffiffi

2pr
p eKK ðr ¼ jr � ajÞ ð73Þ

in the inclusion side, and

czh þ iczr
�Dr þ iDh

� ��
¼ iffiffiffiffiffiffiffi

2pr
p C�1

2
eKK ðr ¼ jr � ajÞ ð74Þ

rzh þ irzr

�Er þ iEh

� ��
¼ iffiffiffiffiffiffiffi

2pr
p eKK ðr ¼ jr � ajÞ ð75Þ

in the matrix side, where

eKK ¼
eKKreKKE

� �
¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pR sin a

p
MRe C�1

2

� �
Re exp i

a
2

n o
C2T

n o
ð76Þ

Taking into mind that M in Eq. (76) is a real and diagonal matrix. Apparently, the above defined eKK is
identical to the conventional definition for field intensity factors (see Deng and Meguid, 1999; Wang and

Shen, 2001).

Accordingly,

DU ¼ U1 �U2 ¼ �2

ffiffiffiffiffiffi
r
2p

r
M�1 eKK ð77Þ

near the upper crack tip and the driving force G can be expressed in terms of eKK as follows

G ¼ 1

4
eKKTM�1 eKK > 0 ð78Þ

5. Examples

In order to understand the physical behavior of the obtained solution, we look at some examples. We

basically follow the classification for the two-phase piezoelectric composite in Deng and Meguid (1999). In
each example, the matrix is subjected to remote uniform mechanical loadings r1

zx , r1
zy and remote uniform

electrical loadings E1
x , E1

y .

5.1. An arc crack in a homogeneous piezoelectric material

It follows from Eq. (34) that e ¼ 0, and as a result all of the physical quantities exhibit the traditional

square root singularities. The square root singularities are in agreement with our expectation. Furthermore,

it follows from Eq. (76) that

eKK ¼
~KKr
~KKE

� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pR sin a

p
Re exp i

a
2

n o r1
zy þ ir1

zx

�E1
x þ iE1

y

� �� �
ð79Þ

It can be observed from the above expression that eKKr only depends on the crack angle a and remote

mechanical loadings; while eKKE only depends on the crack angle a and remote electrical loadings. It is of

interest to point out that the above obtained ~KKr is identical to that derived by Deng and Meguid (1999, Eq.
(49.1)) when substituting a ¼ p � b into Eq. (79). Using Eq. (62), discontinuity in w and u on the crack Lc

can be expressed as
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DU ¼ Dw
Du

� �
¼ 2Im

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr � aÞðr � bÞ

p r1
zy þ ir1

zx

cð2Þ44

eð2Þ11 þ eð2Þ
2

15

cð2Þ44

 !
ð�E1

x þ iE1
y Þ

266664
377775

8>>>><>>>>:

9>>>>=>>>>;; r 2 Lc ð80Þ

where the function
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr � aÞðr � bÞ

p
is taken to be the limiting values when approaching the arc crack Lc

from within the circle jrj ¼ R.
We can find that the crack opening displacement Dw only depends on the remote mechanical loadings

and is independent of the remote electrical loadings.

5.2. Partially debonded elastic dielectric inclusion in elastic dielectric matrix

In this case, the piezoelectric constants eð1Þ15 ¼ eð2Þ15 ¼ 0. It follows from Eq. (34) that e ¼ 0, and all of the
physical quantities will also exhibit the traditional square root singularities. The square root singularities

are also in agreement with our expectation. Furthermore, it follows from Eq. (76) that

eKK ¼
~KKr
~KKE

� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pR sin a

p
2cð1Þ44

cð1Þ44 þ cð2Þ44

0

0
2eð2Þ11

eð1Þ11 þ eð2Þ11

266664
377775Re exp i

a
2

n o r1
zy þ ir1

zx

�E1
x þ iE1

y

� �� �
ð81Þ

It can be found from the above expression that the antiplane elastic fields and the inplane electric fields
are decoupled, a conclusion having been similarly drawn by Deng and Meguid (1999). Also, ~KKr is in

agreement with that derived by Deng and Meguid (1999, Eq. (51)). In addition, it can be easily verified that
~KKE is in accordance with the result obtained by Deng and Meguid (1999, Eq. (51)). Using Eq. (62), dis-

continuity in w and u on the crack Lc can be expressed as

DU ¼ Dw
Du

� �
¼ 2Im

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr � aÞðr � bÞ

p r1
zy þ ir1

zx

cð2Þ44

eð2Þ11 ð�E1
x þ iE1

y Þ

264
375

8><>:
9>=>;; r 2 Lc ð82Þ

From the above equation, we can also observe that antiplane elastic fields and the inplane electric fields are

decoupled. Comparing (80) with (82), we deduce that the piezoelectric effect for the matrix will increase the

densities of electric charges distributed along the arc crack.

5.3. Partially debonded piezoelectric inclusion in elastic dielectric matrix

In this case, eð2Þ15 ¼ 0. It follows from Eq. (34) that

b ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cð1Þ44 =c

ð2Þ
44

� 

1þ cð1Þ44 ðe

ð1Þ
11 þ eð2Þ11 Þ=e

ð1Þ2
15

h ir ð83Þ

As a result, the field components will exhibit oscillatory singularities.
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5.4. Partially debonded elastic dielectric inclusion in a piezoelectric matrix

In this case, eð1Þ15 ¼ 0. It follows from Eq. (34) that

b ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1þ cð2Þ44 =c

ð1Þ
44



1þ cð2Þ44

�
eð1Þ11 þ eð2Þ11


.
eð2Þ

2

15

h ir ð84Þ

More over, if the inclusion is rigid (cð1Þ44 ! 1), then utilize Eq. (84), we will obtain

b ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cð2Þ44

�
eð1Þ11 þ eð2Þ11


.
eð2Þ

2

15

r ð85Þ

In addition, if the inclusion is also conducting (eð1Þ11 ! 1), then utilize Eq. (85), we find that the oscil-

latory index e will be zero.

5.5. Partially debonded piezoelectric inclusion in a piezoelectric matrix

In this subsection, we will consider two cases

� cð1Þ44 e
ð2Þ
15 ¼ cð2Þ44 e

ð1Þ
15

In this special case, the oscillatory index e will be absent. Utilize Eq. (76), we finally obtain

eKKr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pR sin a

p 2cð1Þ44�
cð1Þ44 þ cð2Þ44


Re exp i
a
2

n o
ðr1

zy

n
þ ir1

zx Þ
o

eKKE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pR sin a

p 2
�
cð2Þ44 eð2Þ11 þ eð2Þ

2

15



cð2Þ44

�
eð1Þ11 þ eð2Þ11



þ
�
eð1Þ15 þ eð2Þ15



eð2Þ15

Re exp i
a
2

n o
ð

n
� E1

x þ iE1
y Þ
o ð86Þ

We observe that the stress intensity factor eKKr depends on the remote mechanical loadings and elastic

constants of the two-phase system; while eKKE depends on the remote electrical loadings and electro-elastic

constants of the two-phase system. In addition, we observe that the above expression for eKKr is identical to
Eq. (81). Furthermore, if the matrix is only subjected to mechanical loadings, then it follows from Eq. (78)

that the energy release rate has the following simple expression

G ¼ 1

4

1

cð1Þ44

 
þ 1

cð2Þ44

!eKK 2
r ð87Þ

� cð1Þ44 e
ð2Þ
15 6¼ cð2Þ44 e

ð1Þ
15

In this case, we will consider some practical material combinations. We can take PZT-4, PZT-5H, PZT-

6B, BaTiO3 and ZnO ceramics as an example of which the engineering material constants are tabulated in
Table 1 (Auld, 1973; Chen, 1983; Shindo et al., 1997; Narita and Shindo, 1999).

The calculated oscillatory index e are illustrated in Table 2. Note that in the table we only take e > 0.
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In the Table 2, the number before the sign ‘‘þ’’ denotes the inclusion phase, while the number after ‘‘þ’’

denotes the matrix phase. We find that the index e is very small (e < 0:1) for most of the material com-

binations. When ZnO is present in the combinations, the index e is relatively large (e > 0:1 ).

We illustrate in Fig. 2 the variations of the energy release rate G� ¼ G=R versus crack angle a and some

material combinations with r1
zy ¼ 106 N/m2, r1

zx ¼ 0, E1
x ¼ �2� 104 V/m, E1

y ¼ 0. We find that different
types of material combinations will exert a prominent influence on G, and that the energy release rate will

attain a maximum value for a certain angle 0 < a < p and vanish when a ¼ 0 or p. We demonstrate in Fig. 3

Table 2

Oscillatory index e

Combination e Combination e Combination e

1þ 2 0.00296287 2þ 3 0.07526100 3þ 5 0.01696536

1þ 3 0.09364796 2þ 4 0.04878082 3þ 6 0.11581951

1þ 4 0.05601788 2þ 5 0.06663201 4þ 5 0.01670386

1þ 5 0.07962070 2þ 6 0.15335673 4þ 6 0.11352178

1þ 6 0.20417562 3þ 4 0.03010062 5þ 6 0.12441863

Fig. 2. Variations of the energy release rate G� ¼ G=R versus crack angle a and some material combinations.

Table 1

Material properties of piezoelectric ceramics

No. Material c44 (�1010 N/m2) e15 (C/m2) e11 (�10�10 C/Vm)

1 PZT-4 2.56 12.7 64.6

2 PZT-5H 3.53 17.0 151

3 PZT-6B 2.71 4.6 36

4 BaTiO3 4.3 11.6 112

5 PZT 65/35 3.890 8.387 56.6

6 ZnO 4.247 )0.48 0.757

X. Wang, Z. Zhong / International Journal of Solids and Structures 39 (2002) 5895–5911 5909



the variations of the energy release rate G� ¼ G=R versus crack angle a and the piezoelectric modulus eð2Þ15

with ZnOþ BaTiO3 combination and r1
zy ¼ 106 N/m2, r1

zx ¼ 0, E1
x ¼ 0, E1

y ¼ 0 . We find that the energy

release rate will increase with the increment of eð2Þ15 .

6. Conclusion

The present paper analytically investigates a conducting arc crack between a circular piezoelectric in-

clusion (inhomogeneity) and an unbounded piezoelectric matrix. The boundary value problem is reduced to

a standard Riemann–Hilbert problem of vector form. Closed form solutions for the field potentials are
obtained, explicit expressions for distributions of physical quantities are also derived. It is found that all of

the physical quantities possess the oscillatory singularities �ð1=2Þ � ie, in which e is also given explicitly,

and that the energy release rate or the driving force is always positive. The formulation presented in Section

2 can also be applied to investigate an insulating curved rigid line between a circular piezoelectric inclusion

and an infinite piezoelectric matrix, which is also a stress concentrator and which can be analyzed by an

analogous methodology as the interface arc cracks. It should be noted the fact that the rigid line (or an-

ticrack as termed by Dundurs and Markenscoff, 1989) problems in purely elastic media have been exten-

sively investigated by various investigators (see for example, Dundurs and Markenscoff, 1989; Markenscoff
et al., 1994; Chen and Hasebe, 1992; Chen, 1996) despite the fact that anticracks do not have applications

that are as far ranging as those of cracks, while the rigid line problems in piezoelectric media have not yet

been thoroughly investigated.
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Fig. 3. Variations of the energy release rate G� ¼ G=R versus crack angle a and the piezoelectric modulus eð2Þ15 .
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Appendix A. Explicit expressions for the constant vector T

Case 1: remote mechanical strains c1zx , c1zy and remote electric displacement D1
x , D

1
y

T ¼ c1zy þ ic1zx
�D1

x þ iD1
y

� �
ðA:1Þ

Case 2: remote mechanical stresses r1
zx , r1

zy and remote electric fields E1
x , E1

y

T ¼

1

cð2Þ44

�i
eð2Þ15

cð2Þ44

i
eð2Þ15

cð2Þ44

eð2Þ11 þ eð2Þ
2

15

cð2Þ44

266664
377775 r1

zy þ ir1
zx

�E1
x þ iE1

y

� �
ðA:2Þ

Case 3: remote mechanical strains c1zx , c1zy and remote electric fields E1
x , E1

y

T ¼ 1 0
ieð2Þ15 eð2Þ11

� �
c1zy þ ic1zx

�E1
x þ iE1

y

� �
ðA:3Þ

Case 4: remote mechanical stresses r1
zx , r1

zy and remote electric displacement D1
x , D

1
y

T ¼
eð2Þ11

cð2Þ44 eð2Þ11 þ eð2Þ
2

15

�i
eð2Þ15

cð2Þ44 eð2Þ11 þ eð2Þ
2

15

0 1

264
375 r1

zy þ ir1
zx

�D1
x þ iD1

y

� �
ðA:4Þ
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