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Abstract

The present paper investigates the problem of a conducting arc crack between a circular piezoelectric inclusion and
an unbounded piezoelectric matrix. The original boundary value problem is reduced to a standard Riemann—Hilbert
problem of vector form by means of analytical continuation. Explicit solutions for the stress singularities
0 = —(1/2) £ i¢ are obtained, closed form solutions for the field potentials are then derived through adopting a de-
coupling procedure. In addition, explicit expressions for the field component distributions in the whole field and along
the circular interface are also obtained. Different from the interface insulating crack, stresses, strains, electric dis-
placements and electric fields at the crack tips all exhibit oscillatory singularities. We also define a complex electro-
elastic field concentration vector to characterize the singular fields near the crack tips and derive a simple expression for
the energy release rate, which is always positive, in terms of the field concentration vector. The condition for the
disappearance of the index ¢ is also discussed. When the index ¢ is zero, we obtain conventionally defined electro-elastic
intensity factors. The examples demonstrate the physical behavior and the correctness of the obtained solution.
© 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Due to their intrinsic electromechanical coupling behaviors, piezoelectric ceramics have been widely used
for applications such as sensors, filters, ultrasonic generators and actuators. More recently, the use of
piezoelectric materials has gone beyond the traditional application domain of small electric devices due to
the emergence of piezoelectric composites. Nowadays, piezoelectric materials have been employed as in-
tegrated active structural elements. These adaptive structures are capable of monitoring and adapting to
their environment, providing a ‘“‘smart” response to the external conditions. Since fracture on the macro-
and micro-scale can lead to undesirable mechanical and dielectric response for piezoelectric compo-
sites, fracture process of piezoelectric materials has been a subject of active research. An interface crack
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investigation is of paramount importance for various devices in piezoelectric composites because such
cracks are often the main reason for the failure of the composite system. Kuo and Barnett (1991), Suo et al.
(1992) considered the electrically conducting and electrically insulating crack faces, and singularities at the
tip of an interface crack were investigated. Particularly, a singularity of a real power type was discovered
around an interface crack tip for insulated crack faces. Govorukha and Loboda (2000) examined a plane
strain problem for an interface crack along the fixed edge of a piezoelectric semi-infinite space. Electrically
conducting and electrically insulating crack surfaces were considered in their investigation by using Fourier
transforms. They found oscillatory singularities for an interface conducting crack, and introduced fric-
tionless contact zones to eliminate the oscillatory singularities. Zhong and Meguid (1997) solved the par-
tially debonded circular inclusion problem in piezoelectric materials with hexagonal symmetry (6 mm),
which have been used for many different industrial purposes due to their high piezoelectric coupling co-
efficients. They derived explicit series expressions for the field potentials using Laurent series expansion. As
pointed out by Deng and Meguid (1999), their solution was cumbersome and its convergence depends on
the number of terms used in the series. More recently, Deng and Meguid (1999) reexamined the problem of
a partially debonded piezoelectric circular inclusion. They obtained closed form solutions by considering the
behavior of the complex field potentials at origin and infinity, and also derived explicit formulas for the field
intensity factors. Wang and Shen (2001) considered an arc interface crack in a three-phase piezoelectric
composite constitutive model. In the three-phase model, the interaction effects between neighboring in-
clusions can be taken into account. They obtained series form solutions for the field potentials and the field
intensity factors.

In the discussions of Zhong and Meguid (1997), Deng and Meguid (1999), Wang and Shen (2001), the
arc-shaped crack surfaces were assumed to be insulating or ‘““vacuum abutted”. The conducting arc crack
case or the “electrode” case, in which the void inside the crack is a stress-free, conducting included phase, is
also of theoretical and practical interest since dielectric break down is often associated with growth of
conducting cracks. To our knowledge, this problem has not been investigated in detail. Therefore, this paper
presents a systematic analysis of a conducting arc crack between a circular piezoelectric inclusion and
an unbounded piezoelectric matrix. Using the analytical continuation method of Muskhelishvili (1953),
the boundary value problem is reduced to a standard Riemann-Hilbert problem of vector form. Then
closed form solutions for the field potentials are obtained by solving the resulting Riemann—Hilbert
problem through diagonalization. In addition, explicit expressions for the physical quantity distributions in
the whole field and along the circular interface are also obtained. We find that the stresses, strains, elec-
tric displacements and electric fields near the crack tips all possess the oscillatory singularities —(1/2) = i,
in which the index ¢ is explicitly determined by the electro-elastic properties of the circular inclusion and
the matrix. We also define a complex electro-elastic field concentration vector to characterize the singular
fields near the crack tips. When ¢ = 0, the conventionally defined electro-elastic field intensity factors are
also obtained explicitly. Finally, several examples are shown to understand the physical behavior of the
solution.

2. Basic equations

Consider a circular piezoelectric inclusion of radius R embedded in an unbounded piezoelectric matrix as
shown in Fig. 1. The two-phase piezoelectric composite is subjected to remote uniform electromechanical
loadings. Both the inclusion and the matrix are assumed to be transversely isotropic with the poling di-
rection parallel to the x;-axis. The regions occupied by the inclusion and the nﬁlatrix are denoted respectively
as Sy and S,. The interface between S; and S, is L = L. U Ly, where L. = ab represents the cracked part
which is electrically conducting and traction-free, while Ly, is the ideally bonded part of L. In addition, it is
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Fig. 1. A conducting arc crack between a circular piezoelectric inclusion and an infinite piezoelectric matrix.

assumed that total electric charge on L. is zero. Without loss of generality, the centre of the arc crack lies on
the negative x-axis and the central angle subtended by Ly, is 2. For the problem considered, the governing
field equations and constitutive equations can be simplified considerably as follows

— governing field equations:

Ozxx + Ozpy = 07 DxAx + Dy,y =0 (1)
— electric field—electric potential relations:
Ei = —¢,i (2)
— linear, piezoelectric constitutive equations:
O-zy _ Cq4 —€15 W,y 3a
&)=l wlE] o

O Cq4 —€15 || Wi
_ ’ 3b
where in Egs. (1),(2),(3a),(3b), 0.\, 0., are the shear stress components; D,, D, are the electric displacement
components; E,, E, are the electric fields; w is out-of-plane displacement, ¢ is electric potential. c44, €5 and
&1 are respectively the elastic modulus measured in a constant electric field, the piezoelectric constant, the
dielectric permittivity measured at a constant strain.

For the boundary value problem discussed in this paper, it is more convenient to rewrite the above set of
equations into the following equivalent ones
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— governing field equations:
O-zx‘x + O'zy‘y - 0, Ey,x — Ex,y = 0 (4)

— linear, piezoelectric constitutive equations:

2 T -
Cis eis
r +—= 0 0o ——
Ozy — Cad &1 Wiy + €11 Wx (Sa)
_Er 1 ®yy 2 0 Px
L 0 _ B
&1l 1 §
2
€is ers
- _1 0 - 0 P -
Ox _ Cas &1 Wi | &1 Wy (Sb)
E, 1 Dx és 0 Py
L7 0 _ L e L )
€11 1
where the function ¢ is defined in terms of the electric displacements, as follows
Dy = (P,x7 DX = _(Py (6)
Substitution of Egs. (5a) and (5b) into Eq. (4) results in
Vzw o 2
V2| = 0 (cuen +ejs#0) (7)

where V2 = 02/0x? + 0% /0)” is the two-dimensional Laplace operator in the variables x and y.
The general solution to the above partial differential equation (7) is

v= || = mir) )

where f(z) is a 2-D analytic function vector of the complex variable z = x + iy.
Then the mechanical strains and electric displacements as well as stresses and electric fields can be ex-
pressed in terms of f(z) as

ERAEE o)

] (10
in the fixed Cartesian coordinate system, and

[V;ﬂ;iiyjﬁg] = éf/(Z) (11)

T | = fere (12)

in the polar coordinate system, where in Egs. (10) and (12)

2

e e
15 €15
Cyp +— 1—
C= én én (13)
s 1
&1 &1l

Apparently, C is a Hermitian matrix.
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Now introduce a function vector @, which satisfies the following relationship

[E] =% [Zﬁ‘] =% (14)
Apparently, the second component function of @ is electric potential ¢.
Then it follows from Eq. (10) that
@ = Re{Cf(z)} (15)
Eqgs. (8) and (15) can be written together into the following compact form
C'o+iU=1(z) (16)

In the following analysis, the potential vector f,(z) is defined in the inclusion |z| < a, while the potential
vector f,(z) is defined in the matrix |z| > a.
The boundary and continuity conditions on the circular interface L are

al>:a =0, Ey):E(()z):O, g€l
) — 5@ E(gl) _ E((f) ))E;l) _ V§92>, ph — p@

zr zr ) r r

(17)

o€ Ly

where the superscripts “(1)”” and ““(2)” denote the physical quantities pertaining to the inclusion and the
matrix, respectively.

The above boundary and continuity conditions on the circular interface L can be expressed in terms of
the field potentials f;(z) and f,(z) as follows

oC\f! (6) — oC\f|(0) = o€l
aCyfy(0) — aCaf}(0) = €L, (18)
oC f)(a) — oC f) (o) = asz’Z(a) —oCyfy(0), o€L

of! (0) + of| (0) = ofy(0) + ofy(0), o € Ly

We are now in a position to determine the field potentials which satisfy the boundary and continuity
conditions Eq. (18).

3. Closed form solutions for complex potentials f;(z) and f5(z)

It follows from Eq. (18),,3 that the continuity conditions of traction and tangential component of
electric fields across interface |o| = R can be expressed as

oC\f (o) — Rz/oélf/f(Rz/a) = aCof’y (6) — R?/aCofy' (R* /o), |o| =R (19)

Introduce a function vector A(z) defined by

AG) = { 2C\f! (z) + R2/zCof5(R? [z) — C,Tz — C,TR? [z, |z| < a 20)

R?/zC\f(R*/z) + zCof) (z) — C,Tz — C,TR? )z, |z| > a

where the constant vector T is connected with the remote uniform electromechanical loadings, the explicit
expressions for T can be found in the appendix.

It follows from Egs. (19) and (20) that A(z) is analytic and single-valued in the whole complex plane
including the points at infinity. By Liouville’s theorem, we have
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Alz) =0 (21)
then the following can be obtained
{ Ry (R?)z) = —2C, 'Cif(z) + C, C,Tz + TR?/z, 2| < a )
R/, (R?)z) = —2C, 'Cofy(z) + C, CTz+ C, C:TRY/z, |z| > a

It follows from Eq. (18)4 that the continuity condition of tangential component of mechanical strains
and normal component of electric displacements across the bonded part Ly, of the interface can be expressed
as

of" (0) + R*/of (R*/o) = ofy (o) + R*/of," (R*/0), o € Ly (23)
Substituting Eq. (20) into Eq. (23) will yield
o(1+C, C)Ii (6) — 61+ C, C)fs (6) = (C,' —C, )(C:To + CTR /o), o € Ly (24)
In view of Eq. (24), we introduce the following auxiliary function vector h(z)
wioy = ] 20 +C;:cl)fg (z) —z(1 +C;jC2)T, 1 2| < a (25)
ZI+C, C)fy(z) —zI+C, C)T+R?*/z1—-C, C)T, || >a

It is apparent that h(z) is sectionally holomorphic within the circle |z| < a and outside the circle |z| > a,
and is continuous across the bonded part Ly, i.e.,

h"(c) —h (6) =0, o€lLy (26)
in addition
h(0) =0 (27)

The traction free and equi-potential requirement (18); or (18), on the debonded part (crack) L. of the
interface can be expressed as

cCif"(0) — R?/aCif; (R*/o) =0, o €L (28)

Using Egs. (22) and (25), the above boundary condition can be expressed in terms of the newly defined
function vector h(z) as follows

Mh*(¢) + Mh (¢) = g(s), o€ L. (29)
with
g(c) = —oM(I +C, C)T + R2/eM(I + C;'C,)T (30)
and the Hermitian matrix M is given by
-1
M=[C'+C] (31a)
or more specifically
B 1
= 2
1 2 1 2 1 2
(e + ) (&l + &) + (el + )
n 2.1 2 2) (1)? 1) (27 ) (2 2) (1
e () + ) + el 4 cliel’ (el — eel?)
X (31b)

(1) _(2) 2 1) (1) (2)
’( 44 €15 — Cyq ‘315) Chq +Cyy
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Apparently, Egs. (26) and (29) comprise a standard Riemann-Hilbert problem of vector form. In view of
Eq. (29), we consider the following eigenvalue problem

M — e ™M)v =10 (32)
Following Ting (1986), the oscillatory index ¢ in the above equation can be explicitly determined to be
1 1 1+
o — 4+ 33
R i (33)
) el — el | »

1 2 1 2) (1) 1) (2)?
\/(0514> + C:(14)) {0514)0514) (811 + 811 ) + C4<14)e§5) + 04(14)855)

while the explicit solution for eigenvector v associated with ¢ is

v [ i’?l} (35)

with the real constant 5 given by

1 2
04(14) + 04(14)

1 @ (.0 2) @, () @)
Cyy Cz(u (811 JF"3§1) T Cyels T Cypes

) (36)

From Eq. (34), we can deduce that a necessary and sufficient condition for the absence of index ¢ is the
following

(1 )

c e
= (37)
Cyp €5

We find that the above condition is only dependent on elastic and piezoelectric constants of the two
phases, and is independent of the dielectric constants of the two phases. The above condition is equivalent
to Im{M} = 0, which is identical to that shown by Ting (1986) for purely anisotropic elastic bimaterials.

Now introduce the following coordinate transformation

h(z) = Ph(z), &(0) = 4,P g(0) (38)
where

_|n n

P= L _ll (39)
2 1
(el + ) (&) + &) + (el + ) v
= ! (40)
((244 + C44> 0 Tﬁ

Premultiply Eq. (29) by P' and utilize Eq. (38), then we can finally obtain the following decoupled
Riemann-Hilbert problem

h*(o) + Ah™ (o) = (o), o € L, (41)
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where

672755 0
A= |: 0 eZns:| (42)

A general solution to Eq. (41) is (Muskhelishvili, 1953)

LX) [ ()] '8(o)
h(z) = i /L P do + X(2)c (43)
where the unknown constant vector ¢ can be uniquely determined by Eq. (27), and
1 g i
X(Z): (Z—Cl) ’ (Z_b) i 1 0 1. (44)
0 (z—a) T (z—b)"

The above basic Plemelj function X (z) has a cut along the crack L., in addition X(z) = o(z"!) when
zZ — OQ.
The Cauchy type integral in Eq. (43) can be exactly performed, and the final result is

h(z) = —(1+ A) "' [21 = 28, ()4, P M1+ C, ' Co)T + (1+ A) ™' [R? /2 — 28y (2)] 4P M(I + C;'C,)T

3)
where
s.@=xa|"? %] se=xe[" ) (46)
with
51 (2) = [z — R(cos o — 2¢ 5in )]
$30(2) = [z — R(cos o+ 2esin a)]
@)

si0(z) = R?e* ") [Rz7? — (cos o + 2¢sin o)z
s20(2) = R?e ™ [Rz7? — (cos o — 2¢sin o)z ']
It follows from Eq. (38) that

h(z) = —P(1+ A) "' [21 = 28, (2)]4,P M1+ C, Co)T + P(I+ A) "' [R2/z1 — 28(2)] 4,P' M(I + C;'C,)T

(48)
Noting Eq. (25), then the potential vectors f}(z), f5(z) are
f(z) = —~C;'MP(I + A)"'[1 — S, (2)]4,P M(I1+ C, ' C,)T
+ C'MP(1+ A) " [R? /21 — So(z)]/hFTM(I +C'C)T+C'MI+C, C)T |z <a
(49)

f)(z) = —C;'MP(I+ A) 1 = S, (2)]4,P M(I1+C, ' C,)T — R?/22C,'M(1 - C, 'C,)T
+C'MP(I+ A) 7 [R2/21 = Sy(2)] AP M1+ C;'C)T+T |z >a (50)
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Integrating the above two expressions will result in
fi(z) = —C;'MP(I+ A)"'[21 — Ry (2)]4,P M(1+ C, ' C,)T
—C;'MP(I + A) ' [R? /= — Ro(z)]/hFTM(I +C'C)T+2C,'MI+C, C)T |z <a

(51)
f2(z) = —C;'MP(I + A) "' [21 — Ry (2)]4,P M(I + C, 'C,)T + R*/zC;'M(I - C, 'C,)T
— C;'MP(I+ A) "' [R? /21 — Ry(2)] AP MI+C'C)T+2T |2/ >a (52)
where
R.(z) = /Soo(z)dz =(z—a)(z—b)X(z)
» e2s(n—a) 0 (53)
Ro(z) = - / So(z)dz =Rz (z — a)(z — b)X(2) l 0 ezg(m)]

We can also observe that the analysis of a conducting arc crack is more complicated than the analysis of
an insulating arc crack (Zhong and Meguid, 1997; Deng and Meguid, 1999; Wang and Shen, 2001), with
most of the difficulty stemming from resolving the coupled Riemann-Hilbert problem of vector form.

4. Explicit expressions for physical quantities
4.1. Full field distribution of physical quantities

It follows from Egs. (9), (10) and (49), (50) that

[ Y }

7 - =T —1
| Detip, | = "€ MPI+A) = Su (@) 4P M+ C, C)T

+C'MP(1+ A4) 7 [R2/21 = So(2)| AP M1+ C;'Co)T + C;'M(1+C, )T (54)

[ 0. +i0.,
L _Ex + iEy

] = —-MP(I+ A)"'[I - S (z)] 4, P M(I+ C, C,)T

+MP(I+ A)~' [R/21 = Sy(2)] 4P M(I1 4+ C;'C,) T+ M(I1+ C, C,)T (55)

within the circular piezoelectric inclusion |z| < a, and

e | e ) s @l M+ 6 e
X v
+ C;'MP(1+ A) " [R2/21 = So(2)] 4P M(1+ C;'C,)T — B /2C;'M(1- C, C)T+T
(56)
Oz + io—zx ~r —1 =T —-1
— —MP(I+ 4)"'[1 - S.(2)]4,P' M1+ C, C,)T
|:—Ex+iEy:| ( + ) [ ¢ (Z)] 1 ( + 2 2)

+ MP(I+ A) "' [R2/21 — Sy(2)] 4, P M(I + C;'Cy)T — R /ZM(I - C, 'Cy)T + C,T
(57)

within the unbounded piezoelectric matrix |z| > a.
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4.2. Distribution of physical quantities along the interface L

It follows from Egs. (11) and (12) and (49) and (50) that

. +
Yz +1Nzr — - D ral
T eoMP(I ) 1= SL(@)] 4P M1+ T, )T

—D, +1Dy
+C'MP(I + ) % [R2/a*1 — S{ ()] AP M(I + C;'C,)T + %C;IM(I +GloyT
(58)
[ i T = ~MP(+4) ' 7 [I1-SL(a)] AP'MU+ T, C)T
—E, +1Ey R e

+MP(1+ A)" 2[R /0= S} (@) APM(I + C; ' C)T + 2 M1 +C, C)T  (59)

along the inclusion side of the interface |o| = R, and

[ " ++ITD ] =~y MP(L+ A) ' 2 [1- S, (0)] AP M1+ C; ' C)T + €' MP(1 + 1)
— Ly 0
O 5, 1 _ —T— mam R — 1= .= O
x 2[R /1~ 8 (0)] AP M+ G 'TT - ¢ MA-T,'TT+2T  (60)
[ " ++le } = —MP(I+4)" Z[1-S(0)] 4P M1+, 'C)T + MP(1 + 1)
— Ly 0
0 5, 2 _ —T=— = R— — == O
x 2[R /a1 - 8; (9)] AP M(I+ G 'C)T -~ M- T, ' C)T + £C.T (61)

along the matrix side of the interface || = R.
It follows from Egs. (8), (51) and (52) that discontinuity in w and ¢ on the crack L. can be expressed as

AU=U, - U, = Im{P(o —a)(c — b)X*(0) A" 4,P' M(I + C, ‘cz)T}, o€ L (62)

Differentiating the above expression along the tangential direction of the interface will result in the
following densities of dislocations b and electric charges ¢ continuously distributed along the arc crack L.

H - Re{%Ps;(a)A‘lAIPTM(I —s—C;lCZ)T}, o€ L (63)

q

4.3. Field components near the crack tip

It can be observed from Eqs. (58)—(62) that stresses, strains, electric displacements and electric fields all
possess the oscillatory singularities —(1/2) =+ ie, a result different from that derived by Zhong and Meguid
(1997), Deng and Meguid (1999), Wang and Shen (2001) for an insulating arc crack. Furthermore, stresses,
strains, electric fields and electric displacements are singularly distributed just ahead of the upper crack tip
a = Rexp{ia} along the interface as follows

. + .
yz@ + 1yzr _ 1 -1 — _
[_Dr' i iD()] = \/Z—E?CI MPY(»)K (r=|o—a|) (64)
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- , . ,
0z + 102, _ 1 _ _
__Er+iE0:| ——\/ZEMPY(F)K (r=lo—al) (65)
in the inclusion side, and
[ Y0 + iyzr B _ i -1 — _
D+ iDJ = m;c2 MPY(»)K (r=|o—a|) (66)
[ 09 + iazr - _ i _
_—E,.—J—iEJ _—\/ZWMPY(F)K (r=1lo—a|) (67)
in the matrix side, where
re 0
o=y 2 (68)
K=K +JK; (69a)
0 1
J= [1 0} (69b)
K, = exp {i%}\/nRsinoc
{(1 — 2ig) exp {icIn(2R sin o) + (o — 1)} 0
X
0 (14 2ig)exp{ —ieln(2Rsinwo) — e(oa — m)}
x (I+ A4 A4, P'M(I+C, C,)T (69¢)

Then K can be defined as a complex electro-elastic field concentration vector to characterize the singular
fields near the crack tip. Here we point out that the definition for K is very similar to that introduced by

Willis (1971) for purely anisotropic elastic bimaterials. It follows from Eq. (62) that
1

— 0
AU=U, - U, = —, /z—rn(e*“ +erp| -2 y(K (70)
0 —
1+ 21

near the upper crack tip.
Following Pak (1990), we can derive the crack extension force G to be of the form

1 KT |:62m;(1 + e72m:) 0

G= g 0 eZTw(l + eZns)

}AllK >0 (71)

During the derivation for G, the local coordinate system (&, 7) as shown in Fig. 1, which is tangential to
the upper crack tip, has been adopted. The right-hand side of Eq. (71) is always positive, reflecting the fact
that the linear piezoelectric model predicts a positive driving force for a conducting crack. The positive
value of G for a conducting crack is different from that obtained by Pak (1990) for an insulating crack, and
is in agreement with that derived by Ru (1999) for a conducting crack parallel to the applied electric field,
and is also in accordance with that derived by Govorukha and Loboda (2000) for a conducting crack with a
frictionless contact zone.

When condition (36) is met, then stresses, strains, electric fields and electric displacements are singularly
distributed just ahead of the upper crack tip along the interface as follows

. + .
’yz()+1yzr _ 1 -l — —
[_Drmg} =5 G K (r=lo—a) (72)



5906 X. Wang, Z. Zhong | International Journal of Solids and Structures 39 (2002) 5895-5911

_ ) n .
02 + 102 _ 1 Ve _ _

_—E,+1EJ - \/%K (r=lo—a]) (73)
in the inclusion side, and

[ V=0 + i'yzr - — 1 ) 76 — —

__Dr+iDH:| = r—znrcz K (r=lo—ad|) (74)

[ 020 + iazr - _ i % _ _

_—E,+iEJ - \/%K (r=lo —al) (75)
in the matrix side, where

K = | & | =2VaRsinaMRe{C;' JRe{ exp {i5 }C,T} (76)

K 2

Taking into mind that M in Eq. (76) is a real and diagonal matrix. Apparently, the above defined K is
identical to the conventional definition for field intensity factors (see Deng and Meguid, 1999; Wang and
Shen, 2001).

Accordingly,
AU=U, - U, = —2,/-M"'K (77)
27
near the upper crack tip and the driving force G can be expressed in terms of K as follows
1~ ~
G:ZKTM*IK >0 (78)

5. Examples

In order to understand the physical behavior of the obtained solution, we look at some examples. We
basically follow the classification for the two-phase piezoelectric composite in Deng and Meguid (1999). In
each example, the matrix is subjected to remote uniform mechanical loadings ¢2;, 62, and remote uniform
electrical loadings EY°, E°.

5.1. An arc crack in a homogeneous piezoelectric material

It follows from Eq. (34) that ¢ = 0, and as a result all of the physical quantities exhibit the traditional
square root singularities. The square root singularities are in agreement with our expectation. Furthermore,
it follows from Eq. (76) that

K= {Ilgﬂ = VaRsin ocRe{ exp {i% } [_(Téix++l(-:§;c ] } (79)

It can be observed from the above expression that K, only depends on the crack angle « and remote
mechanical loadings; while Kz only depends on the crack angle o and remote electrical loadings. It is of
interest to point out that the above obtained K is identical to that derived by Deng and Meguid (1999, Eq.
(49.1)) when substituting « = © — f into Eq. (79). Using Eq. (62), discontinuity in w and ¢ on the crack L.
can be expressed as
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o + 62
A 0(2)

AU = [Aﬂ =2Im{ /(o — a)(o — b) ( 2\

, o€L (80)
e .
e+ oy ) (~Ey +iEy)
C

[©)]
44

where the function /(o — a)(o — b) is taken to be the limiting values when approaching the arc crack L.
from within the circle || = R.

We can find that the crack opening displacement Aw only depends on the remote mechanical loadings
and is independent of the remote electrical loadings.

5.2. Partially debonded elastic dielectric inclusion in elastic dielectric matrix

In this case, the piezoelectric constants eﬁ‘; = e(125> = 0. It follows from Eq. (34) that ¢ = 0, and all of the
physical quantities will also exhibit the traditional square root singularities. The square root singularities
are also in agreement with our expectation. Furthermore, it follows from Eq. (76) that

2cly)
_ [z o R 2|0 Fiog
_ o | : 44 44 iz i B
K= || = vamins 24 Re{ew {3} 5 iy |} o
O o
e tép

It can be found from the above expression that the antiplane elastic fields and the inplane electric fields
are decoupled, a conclusion having been similarly drawn by Deng and Meguid (1999). Also, K, is in
agreement with that derived by Deng and Meguid (1999, Eq. (51)). In addition, it can be easily verified that
K is in accordance with the result obtained by Deng and Meguid (1999, Eq. (51)). Using Eq. (62), dis-
continuity in w and ¢ on the crack L. can be expressed as

o2y +io%
} =2Im{ /(¢ — a)(o — b) ) , gelL (82)
e (—EX +iEY)

Aw

AU= {Aso

From the above equation, we can also observe that antiplane elastic fields and the inplane electric fields are
decoupled. Comparing (80) with (82), we deduce that the piezoelectric effect for the matrix will increase the
densities of electric charges distributed along the arc crack.

5.3. Partially debonded piezoelectric inclusion in elastic dielectric matrix

In this case, 6(125) = 0. It follows from Eq. (34) that
1
p= - (83)
), @ 1, 2 1
\/(1 + ‘7514)/04(14)) [1 + ‘734)(851) + 851))/655)

As a result, the field components will exhibit oscillatory singularities.
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5.4. Partially debonded elastic dielectric inclusion in a piezoelectric matrix

In this case, e§‘5> = 0. It follows from Eq. (34) that

p= : (84)

2), (1 2) (.0 2 2)?
(1) [r 2 (o +48) /e

More over, if the inclusion is rigid (cf&) — 00), then utilize Eq. (84), we will obtain

p= 1 (85)

2)( (1 2) 2)2
Y1 (o) et

In addition, if the inclusion is also conducting (8511) — 00), then utilize Eq. (85), we find that the oscil-
latory index ¢ will be zero.

5.5. Partially debonded piezoelectric inclusion in a piezoelectric matrix

In this subsection, we will consider two cases

n,2 _ 2 1)
Cyq €15 = Cyy €55

In this special case, the oscillatory index ¢ will be absent. Utilize Eq. (76), we finally obtain

_ : 2}y : ,
K, = V1R smoc#Re{ exp {lg}(ao‘? +10°°)}

) 2) 2 2 =

Chq +Cy

2 86)
2) (2 2 (
2(C4(14)8(11)+e(15)) R{ .o (= E® +iE®)
€3 exp {1—} —-EY fc}

@) (8511) +8<121)> n (e<115> +e§25>)e<2> 2

1~<E = VrRsina

Cyq 15

We observe that the stress intensity factor K, depends on the remote mechanical loadings and elastic
constants of the two-phase system; while K; depends on the remote electrical loadings and electro-elastic
constants of the two-phase system. In addition, we observe that the above expression for K, is identical to
Eq. (81). Furthermore, if the matrix is only subjected to mechanical loadings, then it follows from Eq. (78)
that the energy release rate has the following simple expression

11 1)\,
G:Z<E+E>KU 57)

44 44

1,2 (2) (1)
° cyels Foyes
In this case, we will consider some practical material combinations. We can take PZT-4, PZT-5H, PZT-
6B, BaTiO; and ZnO ceramics as an example of which the engineering material constants are tabulated in
Table 1 (Auld, 1973; Chen, 1983; Shindo et al., 1997; Narita and Shindo, 1999).
The calculated oscillatory index ¢ are illustrated in Table 2. Note that in the table we only take ¢ > 0.
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Table 1

Material properties of piezoelectric ceramics
No. Material caq (x10'° N/m?) e;5 (C/m?) g1 (x1071° C/Vm)
1 PZT-4 2.56 12.7 64.6
2 PZT-5H 3.53 17.0 151
3 PZT-6B 2.71 4.6 36
4 BaTiO; 4.3 11.6 112
5 PZT 65/35 3.890 8.387 56.6
6 ZnO 4.247 —-0.48 0.757

Table 2

Oscillatory index ¢
Combination g Combination g Combination g
142 0.00296287 243 0.07526100 345 0.01696536
1+3 0.09364796 244 0.04878082 3+6 0.11581951
1+ 4 0.05601788 245 0.06663201 445 0.01670386
1+5 0.07962070 246 0.15335673 446 0.11352178
1+6 0.20417562 3+4 0.03010062 546 0.12441863

150 T T T T T T T T

Material combination

O 144
+ 4+
O 146 -
0 6+

G* (N/(m?

50

Angle (deg)

Fig. 2. Variations of the energy release rate G* = G/R versus crack angle o« and some material combinations.

In the Table 2, the number before the sign “4” denotes the inclusion phase, while the number after “+”
denotes the matrix phase. We find that the index ¢ is very small (¢ < 0.1) for most of the material com-
binations. When ZnO is present in the combinations, the index ¢ is relatively large (¢ > 0.1 ).

We illustrate in Fig. 2 the variations of the energy release rate G* = G/R versus crack angle « and some
material combinations with ¢ = 10° N/m?, 6% = 0, E* = —2 x 10* V/m, E;* = 0. We find that different
types of material combinations will exert a prominent influence on G, and that the energy release rate will
attain a maximum value for a certain angle 0 < o < 7 and vanish when o = 0 or 7. We demonstrate in Fig. 3
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Fig. 3. Variations of the energy release rate G* = G/R versus crack angle o and the piezoelectric modulus e(lzs).
the variations of the energy release rate G* = G/R versus crack angle o and the piezoelectric modulus e%)
with ZnO + BaTiO; combination and ¢y = 10° N/m ox =0,EX =0, EX =0. We find that the energy
release rate will increase with the increment of e15

6. Conclusion

The present paper analytically investigates a conducting arc crack between a circular piezoelectric in-
clusion (inhomogeneity) and an unbounded piezoelectric matrix. The boundary value problem is reduced to
a standard Riemann-Hilbert problem of vector form. Closed form solutions for the field potentials are
obtained, explicit expressions for distributions of physical quantities are also derived. It is found that all of
the physical quantities possess the oscillatory singularities —(1/2) & ie, in which ¢ is also given explicitly,
and that the energy release rate or the driving force is always positive. The formulation presented in Section
2 can also be applied to investigate an insulating curved rigid line between a circular piezoelectric inclusion
and an infinite piezoelectric matrix, which is also a stress concentrator and which can be analyzed by an
analogous methodology as the interface arc cracks. It should be noted the fact that the rigid line (or an-
ticrack as termed by Dundurs and Markenscoff, 1989) problems in purely elastic media have been exten-
sively investigated by various investigators (see for example, Dundurs and Markenscoff, 1989; Markenscoff
et al., 1994; Chen and Hasebe, 1992; Chen, 1996) despite the fact that anticracks do not have applications
that are as far ranging as those of cracks, while the rigid line problems in piezoelectric media have not yet
been thoroughly investigated.
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Appendix A. Explicit expressions for the constant vector T

Case I: remote mechanical strains y2, 727 and remote electric displacement DY, D*

_[ e +x
T= —DY + 1D} (A1)
Case 2: remote mechanical stresses o2y, o2, and remote electric fields E7°, E)°
[ )
L _iei
) (2) 00 4 300
_ | Caa Ca4 Oz T10;
T= e (2 {—EOC +iE>® (A2)
G5 @ G5 ¥ Y
1= & +—F57
@ " 2)
L Caa Cyy

Case 3: remote mechanical strains 3, 72; and remote electric fields £, £

|1 0 Ve + iy
1= i eﬁ)} [—E.;” By (A3)
Case 4: remote mechanical stresses o2y, o2, and remote electric displacement D7°, D
G el ’
11 i 15 6% 4+ i6™
= | (2,2 | (2),2) 4 2 S
T Captyy +é€is Cap byt €55 [—D;O +1Df°] (A4)
0 1 ’
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